Formation Valorisez vos données grâce au Deep Learning
- IA
- Formation détaillée
Une technologie à haute valeur ajoutée si ses contraintes sont maîtrisées
96% de participants satisfaits sur les 12 derniers mois
Objectifs
- Comprendre l’histoire, l’utilité et la nature du Deep Learning
- Adopter une vue d’ensemble des architectures les plus couramment utilisées ainsi que des méthodologies cruciales pour appliquer avec succès le Deep Learning
- Appréhender les différentes contraintes entremêlées au Deep Learning, au regard de la volumétrie de la donnée et de l’infrastructure nécessaire
- Identifier les facteurs de succès clefs pour une gestion de projet réussie et un cycle de vie performant des modèles de deep learning
Programme
1 – Introduction
- Où trouve-t-on du deep learning ? Le traitement d’images et vidéos, le traitement du son, le traitement du texte
- Quelles sont les contraintes du deep learning ? Le volume de données et les infrastructures nécessaires, les problématiques éthiques
- Qu’est-ce que le deep learnning ? Brève histoire du deep learning, les révolutions du hardware, de la data et du software, les leaders mondiaux du deep learning, l’hypothèse hiérarchique
2 – Le neurone artificiel
- Qu’est-ce qu’un neurone artificiel ? Inspiration du neurone biologique, application aux problèmes de classification binaire
- Comment fonctionne l’apprentissage ? La descente de gradient, les méthodes par batch et stochastiques
- Comment évaluer un modèle ? Les jeux de test et de validation, le compromis biais/variance
3 – Le réseau de neurones
- Pourquoi un seul neurone ne suffit pas ? Le cas historique de XOR, les fonctions d’activation, les réseaux de neurones à une couche et multi-couches
- Comment gérer un projet de deep learning ? La référence humaine, les différents jeux de données, l’analyse de diagnostics et sa résolution, l’analyse manuelle d’erreurs
- Quels sont les outils de développement du deep learning ? TensorFlow, PyTorch et les autres
4 – Le traitement automatique d’images
- Qu’est-ce qu’un réseau de neurones convolutif ? Les bases du traitement d’images, les applications les plus courantes, les couches convolutives et de pooling
- Comment détecter des objets sur une image ? Les métriques de performance en détection d’objet, la structure des labels de données, l’architecture Yolo, la suppression non-maximale
- Comment appliquer un transfert de style artistique ? L’apprentissage par transfert, les hallucinations des réseaux de neurones, le transfert de style, le piratage des réseaux de neurones
5 – Le traitement automatique du langage
- Qu’est-ce qu’un réseau de neurones récurrent ? Les bases du traitement de texte, les applications les plus courantes, les couches récurrentes de type GRU et LSTM, application à génération de noms de communes françaises
- Comment faire de la traduction automatique ? L’architecture Seq2Seq et le teacher forcing, application à la traduction littérale de chiffres
- Comment comprendre le langage naturel ? La détection des éléments de grammaire, la reconnaissance d’entités nommées
6 – L’IA générative
- Qu’est-ce que l’IA générative ? Modèles de fondation et Large Language Models, ChatGPT et Gemini, méthodes d’entraînement sur des archives du web
- Comment interagir avec ChatGPT ? Applications concrètes de la vie de tous les jours, capacités émergentes, limites, non-reproductibilité et hallucinations
- Que dit la réglementation européenne sur l’IA générative ? Les obligations des fournisseurs, les IA générative à risque systémique, les points d’attention pour les utilisateurs en aval
7 – L’avenir du deep learning
- Quelles actualités autour du deep learning ? L’omniprésence du deep learnning sur les réseaux sociaux et dans les applications de SmartPhone
- Le deep learning est-il compatible avec la sobriété numérique ? Le rôle des infrastructures, l’écart entre offre et demande énergétique autour de l’intelligence artificielle, ordres de grandeur des émissions de CO2 générées par les modèles de deep learning, méthodes de réduction de l’empreinte environnementale des projets
- Quelles applications vont changer le monde demain ? La traduction multi-modale et la génération d’œuvres d’art
Ce programme a été mis à jour le 22 juillet 2024.
Afficher plusÀ qui s’adresse
cette formation ?
Public
DSI, managers, chefs de projets, maîtres d’ouvrage, responsables marketing, analystes BD.
Prérequis
Aucun.
Osez vous former à l’excellence
- Un décryptage des tendances
- Une « Bubble Care » d’exception
- Partager avec ses pairs
- Des espaces premium
Animateur
Le mot de l'animateur
« Cette formation, illustrée par de nombreux exemples sur des jeux de données réels, propose une approche didactique du Deep Learning. Elle s’adresse à tous ceux qui veulent comprendre ce que ce domaine peut apporter, challenger leurs équipes ou utiliser le Deep Learning au quotidien. Je vous donnerai les clés de compréhension et les points d’attention et de précaution pour une mise en œuvre efficace dans l’entreprise. »
Grégoire MARTINON
Découvrir l'animateurModalités
Méthodologie pédagogique
Cette formation concrète et pragmatique est illustrée par de nombreux exemples pratiques issus d’une expérience et d’un savoir-faire acquis sur de nombreux projets de taille variée au sein d’établissements et d’entreprises de différents secteurs. Support de cours téléchargeable en début de formation.
Méthodologie d’évaluation
Le stagiaire reçoit en amont de la formation un questionnaire permettant de mesurer les compétences, profil et attentes du stagiaire. Tout au long de la formation, les stagiaires sont évalués au moyen de différentes méthodes (quizz, ateliers, exercices et/ou de travaux pratiques, etc.) permettant de vérifier l'atteinte des objectifs. Un questionnaire d'évaluation à chaud est soumis à chaque stagiaire en fin de formation pour s’assurer de l’adéquation des acquis de la formation avec les attentes du stagiaire. Une attestation de réalisation de la formation est remise au stagiaire.
Osez vous former à l’excellence
Une vision globale pour réussir sa transformation
Un environnement propice
à la réflexion
Des opportunités de networking pour s’enrichir
Des espaces premium pour des formations d'exception
À qui s’adresse
cette formation ?
Public
DSI, managers, chefs de projets, maîtres d’ouvrage, responsables marketing, analystes BD.
Prérequis
Aucun.
Autres formations sur le même thème
IA
Exploitez la puissance de l’Intelligence Artificielle : enjeux, concepts et cas d’usages
Prochaines sessions :
- 27-28 Mars 2025
- 19-20 Juin 2025
- 18-19 Sep 2025
- 6-7 Nov 2025
2197 € / pers. HT
Voir toutes les sessions IA
IA Générative : opportunités et défis
Prochaines sessions :
- 28-29 Nov 2024
- 10-11 Avr 2025
- 3-4 Juin 2025
- 25-26 Sep 2025
- 27-28 Nov 2025
2197 € / pers. HT
Voir toutes les sessions Nouvelle Formation
IA
Gouvernance de l’IA : mettre en place processus et outils pour rester conforme
Prochaines sessions :
- 26-27 Juin 2025
- 29-30 Sep 2025
- 11-12 Déc 2025
2197 € / pers. HT
Voir toutes les sessions IA
Découvrez les applications du Machine Learning en entreprise
Prochaines sessions :
- 12-13 Déc 2024
- 19-20 Mai 2025
- 6-7 Oct 2025
2197 € / pers. HT
Voir toutes les sessions Nouvelle Formation
IA
IA Générative : Impacts et opportunités pour les équipes projets IT
Prochaines sessions :
- 2-3 Avr 2025
- 1-2 Juil 2025
- 9-10 Oct 2025
- 4-5 Déc 2025
2197 € / pers. HT
Voir toutes les sessions Nouvelle Formation
IA
Implémentation d’IA Générative : les facteurs clés de succès
Prochaines sessions :
- 24-25 Mars 2025
- 15-16 Mai 2025
- 13-14 Oct 2025
- 1-2 Déc 2025
2197 € / pers. HT
Voir toutes les sessions